Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 180: 114014, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37659576

RESUMO

Honey is the most recognized natural food by-product derived from flower nectar and the upper aero-digestive tract of the honeybees. Significance of honey for its medicinal importance are well-documented in the world's oldest medical literatures. However, the current urbanization, environmental contaminations and changes in agricultural, as well as apiculture practices has led to various types of contaminations in honey. Among all, pesticide contamination has become one of the major issues worldwide. This review focuses on the recent updates concerning pesticides occurrence in honey, as well as how the repeated use and long-term exposure to honey contaminated with pesticide residues could affect the human physiological functions, possibly leading to the development of various cancers. Our findings suggests that uncontrolled use of pesticides in farming and apiculture practices leads to the occurrence of pesticides residues in honey. Therefore, regular consumption of such honey will pose a serious threat to human health, since most of the pesticides has been reported as potential carcinogens. This review will draw the attention of honey consumers, scientific communities, apiculture farmers, as well as governing bodies to strictly monitor the pesticide usage in floriculture, agriculture as well as other related practices.

2.
Nutrients ; 15(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37764733

RESUMO

Globally, lung cancer remains one of the leading causes of cancer-related mortality, warranting the exploration of novel and effective therapeutic approaches. Soy-fermented food products have long been associated with potential health benefits, including anticancer properties. There is still a lack of understanding of the active components of these drugs as well as their underlying mechanistic pathways responsible for their anti-lung cancer effects. In this study, we have undertaken an integrated approach combining network pharmacology and molecular docking to elucidate the mechanism of action of soy-fermented food products against lung cancer through simulation and in vitro validation. Using network pharmacology, we constructed a comprehensive network of interactions between the identified isoflavones in soy-fermented food products and lung cancer-associated targets. Molecular docking was performed to predict the binding affinities of these compounds with key lung cancer-related proteins. Additionally, molecular simulation was utilized to investigate the stability of the compound-target complexes over time, providing insights into their dynamic interactions. Our results identified daidzein as a potential active component in soy-fermented food products with high binding affinities towards critical lung cancer targets. Molecular dynamic simulations confirmed the stability of the daidzein-MMP9 and daidzein-HSP90AA1 complexes, suggesting their potential as effective inhibitors. Additionally, in vitro validation experiments demonstrated that treatment with daidzein significantly inhibited cancer cell proliferation and suppressed cancer cell migration and the invasion of A549 lung cancer cells. Consequently, the estrogen signaling pathway was recognized as the pathway modulated by daidzein against lung cancer. Overall, the findings of the present study highlight the therapeutic potential of soy-fermented food products in lung cancer treatment and provide valuable insights for the development of targeted therapies using the identified bioactive compounds. Further investigation and clinical studies are warranted to validate these findings and translate them into clinical applications for improved lung cancer management.

3.
Life (Basel) ; 13(8)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37629596

RESUMO

Globally, breast cancer (BC), the second-biggest cause of cancer death, occurs due to unregulated cell proliferation leading to metastasis to other parts of the human organ. Recently, the exploration of naturally derived anticancer agents has become popular due to their fewer adverse effects. Among the natural products, soybean is a very well-known legume that contains important bioactive compounds such as diadazine, glycetin, genistein, and genistin. Therefore, keeping its therapeutic potential in mind, multi-targeted molecular docking and simulation studies were conducted to explore the potential role of soybean-derived isoflavone genistin against several breast cancer-signaling proteins (ER-alpha, ER-Beta, collapsin response mediator protein 2, CA 15-3, human epidermal growth factor receptor 2). A comparative study of the genistin-protein docked complex was explored to investigate its potential role in BC. The molecular binding energy (∆G) of the docked complex was calculated along with ADMET properties. The molecular docking score of genistin with ubiquitin-like protein activation complex-a type of Cancer Antigen (CA) 15.3 (PDB ID-2NVU, 5T6P, and 1YX8) showed the highest binding energy, ranging from -9.5 to -7.0 Kcal/mol, respectively. Furthermore, the highest docking scores of the complex were additionally put through molecular dynamics (MD) simulation analysis. MD simulations of the selected complex were performed at 100 ns to study the stability of the genistin-ubiquitin-like protein CA 15.3 complex, which appeared to be quite stable. Additionally, the ADMET study demonstrated that genistin complies with all drug-likeness standards, including Lipinski, Egan, Veber, Ghose, and Muegge. Therefore, based on the results, genistin can be considered as one of the potential drugs for the management and treatment of BC. In addition, the obtained results suggest that genistin could pave the way for new drug discovery to manage breast cancer and has potential in the development of nutraceuticals.

4.
Molecules ; 27(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35209197

RESUMO

Eruca sativa Mill. (E. sativa) leaves recently grabbed the attention of scientific communities around the world due to its potent bioactivity. Therefore, the present study investigates the metabolite profiling of the ethanolic crude extract of E. sativa leaves using high resolution-liquid chromatography-mass spectrometry (HR-LC/MS), including antibacterial, antioxidant and anticancer potential against human colorectal carcinoma cell lines. In addition, computer-aided analysis was performed for determining the pharmacokinetic properties and toxicity prediction of the identified compounds. Our results show that E. sativa contains several bioactive compounds, such as vitamins, fatty acids, alkaloids, flavonoids, terpenoids and phenols. Furthermore, the antibacterial assay of E. sativa extract showed inhibitory effects of the tested pathogenic bacterial strains. Moreover, the antioxidant activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) were found to be IC50 = 66.16 µg/mL and 76.05 µg/mL, respectively. E. sativa also showed promising anticancer activity against both the colorectal cancer cells HCT-116 (IC50 = 64.91 µg/mL) and Caco-2 (IC50 = 83.98 µg/mL) in a dose/time dependent manner. The phytoconstituents identified showed promising pharmacokinetics properties, representing a valuable source for drug or nutraceutical development. These investigations will lead to the further exploration as well as development of E. sativa-based nutraceutical products.


Assuntos
Antibacterianos , Antineoplásicos Fitogênicos , Antioxidantes , Neoplasias Colorretais/tratamento farmacológico , Simulação por Computador , Compostos Fitoquímicos , Extratos Vegetais , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Células CACO-2 , Neoplasias Colorretais/metabolismo , Células HCT116 , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
5.
Molecules ; 26(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34641501

RESUMO

Diabetes mellitus is a global threat affecting millions of people of different age groups. In recent years, the development of naturally derived anti-diabetic agents has gained popularity. Okra is a common vegetable containing important bioactive components such as abscisic acid (ABA). ABA, a phytohormone, has been shown to elicit potent anti-diabetic effects in mouse models. Keeping its anti-diabetic potential in mind, in silico study was performed to explore its role in inhibiting proteins relevant to diabetes mellitus- 11ß-hydroxysteroid dehydrogenase (11ß-HSD1), aldose reductase, glucokinase, glutamine-fructose-6-phosphate amidotransferase (GFAT), peroxisome proliferator-activated receptor-gamma (PPAR-gamma), and Sirtuin family of NAD(+)-dependent protein deacetylases 6 (SIRT6). A comparative study of the ABA-protein docked complex with already known inhibitors of these proteins relevant to diabetes was compared to explore the inhibitory potential. Calculation of molecular binding energy (ΔG), inhibition constant (pKi), and prediction of pharmacokinetics and pharmacodynamics properties were performed. The molecular docking investigation of ABA with 11-HSD1, GFAT, PPAR-gamma, and SIRT6 revealed considerably low binding energy (ΔG from -8.1 to -7.3 Kcal/mol) and predicted inhibition constant (pKi from 6.01 to 5.21 µM). The ADMET study revealed that ABA is a promising drug candidate without any hazardous effect following all current drug-likeness guidelines such as Lipinski, Ghose, Veber, Egan, and Muegge.


Assuntos
Abelmoschus/química , Ácido Abscísico/farmacologia , Diabetes Mellitus/metabolismo , Hipoglicemiantes/farmacologia , Proteínas/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Ácido Abscísico/química , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacocinética , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Simulação por Computador , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glucoquinase/química , Glucoquinase/metabolismo , Glutamina/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Hipoglicemiantes/química , Simulação de Acoplamento Molecular , PPAR gama/química , PPAR gama/metabolismo , Proteínas/química , Sirtuínas/química , Sirtuínas/metabolismo
6.
Molecules ; 26(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204669

RESUMO

Abelmoschus esculentus (Okra) is an important vegetable crop, widely cultivated around the world due to its high nutritional significance along with several health benefits. Different parts of okra including its mucilage have been currently studied for its role in various therapeutic applications. Therefore, we aimed to develop and characterize the okra mucilage biopolymer (OMB) for its physicochemical properties as well as to evaluate its in vitro antidiabetic activity. The characterization of OMB using Fourier-transform infrared spectroscopy (FT-IR) revealed that okra mucilage containing polysaccharides lies in the bandwidth of 3279 and 1030 cm-1, which constitutes the fingerprint region of the spectrum. In addition, physicochemical parameters such as percentage yield, percentage solubility, and swelling index were found to be 2.66%, 96.9%, and 5, respectively. A mineral analysis of newly developed biopolymers showed a substantial amount of calcium (412 mg/100 g), potassium (418 mg/100 g), phosphorus (60 mg/100 g), iron (47 mg/100 g), zinc (16 mg/100 g), and sodium (9 mg/100 g). The significant antidiabetic potential of OMB was demonstrated using α-amylase and α-glucosidase enzyme inhibitory assay. Further investigations are required to explore the newly developed biopolymer for its toxicity, efficacy, and its possible utilization in food, nutraceutical, as well as pharmaceutical industries.


Assuntos
Abelmoschus/química , Mucilagem Vegetal/química , Mucilagem Vegetal/isolamento & purificação , Abelmoschus/metabolismo , Antioxidantes/química , Biopolímeros/análise , Biopolímeros/química , Suplementos Nutricionais , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/metabolismo , Extratos Vegetais/farmacologia , Polissacarídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , alfa-Amilases/química , alfa-Glucosidases/química
7.
Sci Total Environ ; 768: 144990, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33736303

RESUMO

A rapid increase in world population is leading to the rise in global demand of food and agriculture (agri) products. Nanotechnology and its applications have emerged as one of the most pioneering and promising technology for transforming conventional food and agri industries, with the aim of sustainable farming, improving the food security, quality and safety which could revolutionize the food and agri industries. Current developments in nanotechnology have led to the new paths progressively and bringing the radical changes the way food is perceived throughout the farming, transportation, processing, packaging, storage, monitoring and consumption. This review brings the current updates on novel nanomaterials in food and agri industries. Emphasis is given on the importance of nanotechnological applications, offering complete food solutions from farm to fork; including nutraceutical and functional foods, improving bioavailability, efficiency, nutritional status, nano-additives, food texture, color, taste and packaging. Agricultural sector also witnessed several nano-based products, such as nano-fertilizer, nano-pesticide, nano growth promoters and many more for the development of sustainable farming and crop improvement. Despite of numerous advantages of nanotechnology, there are still toxicity challenges, safety concerns, which needs to be addressed and demands transformations in regulatory policies. Rapid development is projected to transform several foods and agri sectors, with rapid increase in market stake and investment. Government agencies, private research centers as well as academicians are also coming together to explore the benefits of nanotechnology to improve food scarcity in the coming years.

8.
Molecules ; 26(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525745

RESUMO

Recently, there has been a paradigm shift from conventional therapies to relatively safer phytotherapies. This divergence is crucial for the management of various chronic diseases. Okra (Abelmoschus esculentus L.) is a popular vegetable crop with good nutritional significance, along with certain therapeutic values, which makes it a potential candidate in the use of a variety of nutraceuticals. Different parts of the okra fruit (mucilage, seed, and pods) contain certain important bioactive components, which confer its medicinal properties. The phytochemicals of okra have been studied for their potential therapeutic activities on various chronic diseases, such as type-2 diabetes, cardiovascular, and digestive diseases, as well as the antifatigue effect, liver detoxification, antibacterial, and chemo-preventive activities. Moreover, okra mucilage has been widely used in medicinal applications such as a plasma replacement or blood volume expanders. Overall, okra is considered to be an easily available, low-cost vegetable crop with various nutritional values and potential health benefits. Despite several reports about its therapeutic benefits and potential nutraceutical significance, there is a dearth of research on the pharmacokinetics and bioavailability of okra, which has hampered its widespread use in the nutraceutical industry. This review summarizes the available literature on the bioactive composition of okra and its potential nutraceutical significance. It will also provide a platform for further research on the pharmacokinetics and bioavailability of okra for its possible commercial production as a therapeutic agent against various chronic diseases.


Assuntos
Abelmoschus/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Doença Crônica/tratamento farmacológico , Dieta/métodos , Suplementos Nutricionais , Frutas/química , Humanos , Fitoterapia/métodos , Extratos Vegetais/química
9.
Molecules ; 25(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545666

RESUMO

Cordyceps is a rare naturally occurring entomopathogenic fungus usually found at high altitudes on the Himalayan plateau and a well-known medicinal mushroom in traditional Chinese medicine. Cordyceps contains various bioactive components, out of which, cordycepin is considered most vital, due to its utmost therapeutic as well as nutraceutical potential. Moreover, the structure similarity of cordycepin with adenosine makes it an important bioactive component, with difference of only hydroxyl group, lacking in the 3' position of its ribose moiety. Cordycepin is known for various nutraceutical and therapeutic potential, such as anti-diabetic, anti-hyperlipidemia, anti-fungal, anti-inflammatory, immunomodulatory, antioxidant, anti-aging, anticancer, antiviral, hepato-protective, hypo-sexuality, cardiovascular diseases, antimalarial, anti-osteoporotic, anti-arthritic, cosmeceutical etc. which makes it a most valuable medicinal mushroom for helping in maintaining good health. In this review, effort has been made to bring altogether the possible wide range of cordycepin's nutraceutical potential along with its pharmacological actions and possible mechanism. Additionally, it also summarizes the details of cordycepin based nutraceuticals predominantly available in the market with expected global value. Moreover, this review will attract the attention of food scientists, nutritionists, pharmaceutical and food industries to improve the use of bioactive molecule cordycepin for nutraceutical purposes with commercialization to aid and promote healthy lifestyle, wellness and wellbeing.


Assuntos
Cordyceps/química , Desoxiadenosinas/metabolismo , Desoxiadenosinas/farmacologia , Cordyceps/isolamento & purificação , Cordyceps/metabolismo , Suplementos Nutricionais , Humanos , Medicina Tradicional Chinesa/métodos
10.
J Food Sci Technol ; 54(10): 3307-3313, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28974816

RESUMO

The combined effects of grain germination and of subsequent fermentation on the physicochemical properties of sorghum flour were investigated by studying the structural changes occurring in the starch and protein fractions and by assessing their effects on physical properties of the resulting materials most relevant to end use. The sequential treatments were more effective than either individual treatment in the modification of starch-related properties, whereas modification of the protein components only occurs in the fermentation step, almost regardless of a previous germination step. The resulting profile of physicochemical traits offers several hints as for the suitability of flour from treated sorghum as an ingredient for various types of gluten-free food products, and provides a basis for expanding the use of processed sorghum in applications other than traditional African foods.

11.
J Food Sci Technol ; 50(1): 186-90, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24425907

RESUMO

A Sudanese sorghum cultivar (Fetarita) was germinated for 3 days. Stability and clarity of sorghum pastes, freeze-thaw stability, gel consistency, and swelling power were measured every 24 h. There is no substantial difference in stability and clarity between flour samples from germinated and ungerminated sorghum, but a different behavior was observed between samples stored at room temperature and at 4 °C. Cooked paste derived from germinated sorghum flour presented higher syneresis than that derived from ungerminated sorghum flour over the first three cycles but when the cycle number increased, both flours showed zero syneresis value. For the gel consistency the flours derived from germinated sorghum produced thinnest gels. The neutral and acid gel consistency increased when the germination time increased. Germination had not much effect on the swelling power of sorghum flour.

12.
Nahrung ; 48(2): 91-4, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15146963

RESUMO

The effect of natural fermentation of Tabat sorghum cultivar (Sorghum bicolor L. Moench) at 37 degrees C for up to 36 h on pH, titratable acidity, starch digestibility, resistant starch and total starch was studied. The pH of the fermenting dough decreased sharply with a concomitant increase in the titratable acidity. In vitro starch digestibility markedly increased as a result of fermentation, while resistant starch and total starch decreased. Results showed that iodine absorption capacity increased during fermentation. Fermented sorghum had more soluble starch and swelling power at 100 degrees C than at 85 degrees C.


Assuntos
Digestão , Sorghum/química , Amido/metabolismo , Fenômenos Químicos , Físico-Química , Carboidratos da Dieta/metabolismo , Fermentação , Farinha , Concentração de Íons de Hidrogênio , Valor Nutritivo , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...